Microbiological Hydroxylation of Steroids. Part IX. ${ }^{1}$ Hydroxylation of Diketones and Keto-alcohols Derived from 5α-Androstane with the Fungi Rhizopus arrhizus and Rhizopus circinnans. Steroidal 18- and 19-Proton Magnetic Resonance Signals ${ }^{2}$

By Alan M. Bell, Ian M. Clark, William A. Denny, Sir Ewart R. H. Jones, G. Denis Meakins," Wilhelm E. Müller, and (Mrs.) Eva E. Richards, Dyson Perrins Laboratory, Oxford University, South Parks Road, Oxford OX1 3QY

Abstract

The hydroxylations of seven diketones and keto-alcohols derived from 5α-androstane with Rhizopus arrhizus and Rhizopus circinnans are similar to, but not identical with, those observed previously using Rhizopus nigricans. R. circinnans is useful for introducing a 4α-hydroxy-group into 5α-androstane-11.17-dione. N.m.r. shift values are given for the influence on steroidal 18 - and $19-\mathrm{H}$ signals of various single substituents. and of systems containing two or more substituents whose effects are not additive.

Previously we investigated the hydroxylation of a range of dioxygenated 5α-androstanes with Calonectria decora, ${ }^{3}$ Aspergillus ochraceus, ${ }^{4}$ and Rhizopus nigricans. ${ }^{1}$ These fungi, of different genera, lead to characteristic patterns of hydroxylation which differ fundamentally from each other. We have now examined other fungi, from the same genus as one of those already studied, using a selection of the substrates employed earlier. The literature ${ }^{5}$ suggests that such related fungi should show similar, but not identical, behaviour in steroid hydroxylation. However, as already emphasised, ${ }^{6}$ the uniformity of the substrates employed (in particular, the concentration on 3 -oxo- Δ^{4}-compounds) may well have masked significant differences between certain fungi. The species selected, for comparison with Rhizopus nigricans ($R n$), were Rhizopus arrhizus ($R a$) and Rhizopus circinnans ($R c$). Of these, the former is known ${ }^{5}$ to cause monohydroxylation (at the 11α - and, much less frequently, at the 6β - and 7β-positions) and $7 \beta, 11 \alpha$-dihydroxylation of certain 5α-steroids (androstane and pregnane derivatives), and to hydroxylate a few 5β-substrates (cardenolides) at the 1β - and 5β-positions; Rhizopus circinnans does not appear to have been used previously for steroid hydroxylation.

Table 1 summarises the results. [The use of the (arabic) serial number sequence of steroids throughout this work, and considerations about the structural elucidation and the reporting of new compounds have been explained earlier. ${ }^{6}$ Compounds nos. 634-650 (whose n.m.r. signals are listed in Table 2) are described here.]

Comparison of the present hydroxylations with those reported earlier ${ }^{1}$ shows that there is a greater similarity between $R n$ and $R a$ than between either of these and $R c$: the extent to which $R c$ differs from the other two
${ }_{1}$ Part VIII, V. E. M. Chambers, W. A. Denny, J. M. Evans, Sir Ewart R. H. Jones, A. Kasal, G. D. Meakins, and J. Pragnell, J.C.S. Perkin I, 1973, 1500.
${ }^{2}$ Details of the experimental work (which is recorded only briefly in the Experimental section), and the considerations leading to the shift values in Table 3 are given by I. M. Clark, D.Phil. Thesis, Oxford, 1972.
${ }^{3}$ A. M. Bell, W. A. Denny, Sir Ewart R. H. Jones, G. D. Meakins, and W. E. Müller, J.C.S. Perkin I, 1972, 2759.
${ }^{4}$ A. M. Bell, J. W. Browne, W. A. Denny, Sir Ewart R. H. Jones, A. Kasal, and G. D. Meakins, J.C.S. Perkin I, 1972, 2930.
varies with the nature of the substrate, as illustrated in the Scheme. The model proposed to explain the $R n$ results ${ }^{1}$ (the presence of three dual-purpose binding and hydroxylating sites on the enzyme surface) works well with $R a$; the $R c$ hydroxylations are more complicated, the difference arising from the greater tendency of this fungus to substitute the middle rings of the steroid nucleus. In cases where $R n$ and $R a$ show a clear preference for hydroxylating a particular carbon atom in a middle ring $R c$ behaves similarly [substrates (I) and (II)], and where the first two attack two middle ring positions Rc differs only slightly [substrate (III)]. However with androstanes which are hydroxylated at the same terminal positions by $R n$ and $R a$ the differences between these fungi and $R c$ become more marked [substrates (IV), (V), (VI), and (less clearly) (VII)]. With so little detailed knowledge of the hydroxylation processes, it does not seem profitable to speculate about the reasons for these differences.

An advantage of $R c$ over the other two fungi for preparative work lies in its greater ability to introduce a 4-hydroxy-group, as shown by the conversion of 5α -androstane-11,17-dione (VII) into $4 \alpha, 17 \beta$-dihydroxy5α-androstan-l1-one in 44% yield.

Our earlier survey ${ }^{7}$ of the effects of substituents on steroidal angular methyl groups' signals was based on the results in the literature and those from the 344 compounds already encountered in the microbiological work. The subsequent study of a further 306 steroids has given shift values (Table 3) for systems not covered by the previous compilation. As before, ${ }^{7}$ the material is divided into four sections corresponding to the different configurations at positions 5 and 14 . Within a section the order is determined by the steroidal number of the substituent, and, for compounds with further groups, by the number of the second substituent. In ordering
${ }^{5}$ W. Charney and H. L. Herzog, ' Microbial Transformations of Steroids,' Academic Press, New York, 1967.
${ }_{6}$ A. M. Bell, P. C. Cherry, I. M. Clark, W. A. Denny, Sir Ewart R. H. Jones, G. D. Meakins, and P. D. Woodgate, J.C.S. Perkin I, 1972, 2081.

7 J. E. Bridgeman, P. C. Cherry, A. S. Clegg, J. M. Evans, Sir Ewart R. H. Jones, A. Kasal, V. Kumar, G. D. Meakins, Y. Morisawa, E. E. Richards, and P. D. Woodgate, J. Chem. Soc. (C), 1970, 250.
substituents with the same number, priority is given in the sequence $\mathrm{CO}>$ acetal $>$ thioacetal $>\mathrm{OH}>$ $\mathrm{OAc}>\mathrm{OMe}>$ epoxy (denoted by, e.g. $2 \beta, 3 \beta-\mathrm{O}$) $>$ olefin, for epimeric pairs $\alpha>\beta$, and a single substituent
predicted on the basis of independent action by the separate groups, i.e. cases where the individual shifts are not additive. Although interaction would be expected in many of the systems, there are several

Table 1
Hydroxylations with Rhizopus arrhizus (Ra) and Rhizopus circinnans (Rc)

5α-Androstane
The substrates, all derivatives of 5α-androstane, are indicated by abbreviated names, e.g. $3 \beta-\mathrm{OH}-17$-CO represents 3β-hydroxy- $5 \alpha-$ androstan- 3 -one. In the 'products' columns those oxygen functions introduced during the incubation are in bold type. The substrates were introduced as solutions in ethanol, and the incubations were carried out for 2 or 4 days (see Experimental section). The yields are calculated after making allowance for recovered starting material.

is listed before systems containing that substituent and an extra substituent [e.g. $12 \beta-\mathrm{OH}>12 \beta-\mathrm{OH}-17-\mathrm{CO}>$ $\left.12 \beta, 17 \beta-(\mathrm{OH})_{2}\right]$.

Most of the entries refer to two substituents whose combined effect is appreciably different from that
instances, e.g. $12 \alpha, 17 \beta-(\mathrm{OH})_{2}$, in which it would have appeared reasonable to apply normal shift values. A few of the earlier figures ${ }^{7}$ have been revised. The largest change is for the 15 -CO in $5 \alpha, 14 \beta$-steroids where the earlier value was deduced incorrectly, as already
explained. ${ }^{8}$ Values given under $5 \alpha, 14 \alpha$-steroids for substituents in ring A and at positions 6 and 11 may be used with reasonable confidence for the same substituents in $5 \alpha, 14 \beta$-steroids; similarly those for substituents in rings C and D and at position 7 can be applied to $5 \beta, 14 \alpha$-steroids.

EXPERIMENTAL

For general directions see ref. 6. Where compounds with serial numbers below 634 are stated to have been
tion with $\mathrm{Ra}: 2.0 \mathrm{~g}$ in $\mathrm{EtOH}(100 \mathrm{ml}), 50$ flasks, medium $\mathrm{B}, 2 \mathrm{~d}$, extraction $\mathrm{II} \longrightarrow 3.8 \mathrm{~g}$ combined extracts. Chromat. $\mathrm{Al}_{2} \mathrm{O}_{3}(2 \%$ deactivated; 150 g$) . \mathrm{Et}_{2} \mathrm{O}$ eluted a mixture which was separated by p.l.c. [2 small plates, $1 \times$ petrol- $\left.\mathrm{Me}_{2} \mathrm{CO}(4: 1)\right]$ to give 3β-hydroxy- 5α-andro-stane-7,17-dione (no. 558) (20 mg), m.p. (from $\mathrm{Me}_{2} \mathrm{CO}-$ hexane) and mixed ${ }^{1} \mathrm{~m} . \mathrm{p}$. 200-203 ${ }^{\circ}$, and 11α-hydroxy5α-androstane-3,17-dione (no. 519) (10 mg), m.p. (from $\mathrm{Me}_{2} \mathrm{CO}$-hexane) and mixed ${ }^{4}$ m.p. 193-195 ${ }^{\circ}$. $\mathrm{Et}_{2} \mathrm{O}-$ MeOH ($49: 1$) eluted $3 \beta, 7 \beta$-dihydroxy- 5α-androstan-17one (no. 250) ($1 \cdot 2 \mathrm{~g}$), m.p. (from $\mathrm{Me}_{2} \mathrm{CO}$-hexane) and

Scheme
Comparison of main monohydroxylation products obtained with Rhizopus species Rn(nigricans), Ra(arrhizus), and Rc(circinnans)

(1)

(III)

(V)

(VII)

(II)

(IV)

(VII)
identified by mixed m.p., the original preparations are contained in, or can be found from, the papers cited. The microbiological procedures and the abbreviations used in reporting the results are given fully in ref. 9. Components of mixtures isolated by p.l.c. are reported in order of decreasing R_{F} value. Petrol refers to light petroleum, b.p. $60-80^{\circ}$, Ra to Rhizopus arrhizus, and Rc to Rhizopus circinnans.

3及-Hydroxy-5 α-androstan-17-one (no. 151). (a) Incuba-
${ }^{8}$ A. D. Boul, J. W. Blunt, J. W. Browne, V. Kumar, G. D. Meakins, J. T. Pinhey, and V. E. M. Thomas, J. Chem. Soc. (C), 1971, 1130.
mixed ${ }^{10} \mathrm{~m} . \mathrm{p} .240-241^{\circ}$, and $3 \beta, 7 \alpha$-dihydroxy- 5α-andro-stan-17-one (no. 249) (420 mg), m.p. (from $\mathrm{Me}_{2} \mathrm{CO}$-hexane) and mixed ${ }^{1}$ m.p. $194-195^{\circ}$. $\mathrm{Et}_{2} \mathrm{O}-\mathrm{MeOH}(9: 1)$ eluted $3 \beta, 6 \alpha$-dihydroxy- 5α-androstan-17-one (no. 246) (170 mg), m.p. (from $\mathrm{Me}_{2} \mathrm{CO}-$ hexane) and mixed ${ }^{1} \mathrm{~m} . \mathrm{p} .222-223^{\circ}$.
(b) Incubation with Rc: 1.0 g in $\mathrm{EtOH}(50 \mathrm{ml})$, 25 flasks,
${ }^{9}$ J. W. Blunt, I. M. Clark, J. M. Evans, Sir Ewart R. H. Jones, G. D. Meakins, and J. T. Pinhey, J. Chem. Soc. (C), 1971, 1136.
${ }_{10}$ J. W. Browne, W. A. Denny, Sir Ewart R. H. Jones, G. D. Meakins, Y. Morisawa, A. Pendlebury, and J. Pragnell, J.C.S. Perkin I, 1973, 1493.

Table 2
N.m.r. signals

The results presented in the form used earlier, a were obtained by examining solutions in CDCl_{3} at 100 MHz .

No.	Compound		τ_{2}	τ_{2} (calc.) ${ }^{*}$		$\bigcirc \mathrm{CH}-\mathrm{OR}$	
634	1α-Hydroxy- 5α-androstane-	19	$8 \cdot 94$	8.91	H-1	6.23	$\mathrm{m}(7)$
	7,17-dione \dagger	18	$9 \cdot 14$	$9 \cdot 13$			
635	2β-Hydrox y - $\bar{\alpha} \alpha$-androstane-	19	$8 \cdot 67$	$8 \cdot 66$	H-2	5.82	$\mathrm{m}(10)$
	7,17-dione	18	$9 \cdot 13$	$9 \cdot 12$			
636	3β-Hydrox 9 - $\bar{\alpha} \alpha$-androstane-	19	$8 \cdot 88$	$8 \cdot 87$	H-3	$6 \cdot 36$	$\mathrm{m}(22)$
	7,16-dione	18	$9 \cdot 13$	$9 \cdot 12$			
637	4α-Hydroxy- 5α-androstane-	19	$8 \cdot 91$	$8 \cdot 90$	H-4	$6 \cdot 38$	$6(11,11,5)$
	7,17-dione \dagger	18	$9 \cdot 13$	$9 \cdot 13$			
638	6α-Hydroxy-5 α-androstane-	19	$8 \cdot 77$	$8 \cdot 73$	H-6	6.52	$\mathrm{m}(22)$
	3,11-dione	18	$9 \cdot 31$	$9 \cdot 30$			
639	7β-Hydroxy- 5α-androstane-	19	8.74	$8 \cdot 73$	H-7	$6 \cdot 46$	$\mathrm{m}(20)$
	3,11-dione	18	9.28	$9 \cdot 27$			
640	11α-Hydroxy- 5α-androstane-	19	$8 \cdot 80$	$8 \cdot 80$	H-11	$5 \cdot 86$	$6(10,10,5)$
	7,17-dione	18	$9 \cdot 14$	$9 \cdot 10$			
641	16 α-Hydroxy-5 α-androstane-	19	$8 \cdot 73$	$8 \cdot 71$	H-16	$5 \cdot 56$	$\mathrm{m}(18)$
	3,7-dione	18	$9 \cdot 27$	$9 \cdot 25$			
642	17α-Hydroxy- $\bar{\alpha} \alpha$-androstane-	19	$8 \cdot 72$	$8 \cdot 72$	H-17	6.28	$\mathrm{m}(10)$
	3,7-dione	18	$9 \cdot 33$	$9 \cdot 33$			
643	9α-Hydroxy- 5α-androstane-	19	$8 \cdot 69$	$8 \cdot 70$			
	3,11,16-trione	18	$9 \cdot 12$	$9 \cdot 12$			
644	$3 \beta, 7 \beta$-Dihydroxy- $\bar{\sim} \alpha-$	19	$8 \cdot 94$	$8 \cdot 94$	H-3	$6 \cdot 52$	$\mathrm{m}(20)$
	androstan-11-one \dagger	18	$9 \cdot 30$	$9 \cdot 30$	H-7	$6 \cdot 32$	$\mathrm{m}(20)$
645	$7 \beta, 17 \beta$-Dihydroxy- $5 \alpha-$	19 18	8.95	$8 \cdot 97$	$\xrightarrow{\mathrm{H}-7}$	6.48	$\mathrm{m}(20)$
	androstan-11-one	18	$9 \cdot 29$	$9 \cdot 28$	H-17	$6 \cdot 17$	t(8)
646	$11 \alpha, 17 \beta$-Dihydroxy-5 α -	19	$8 \cdot 81$	8.82	H-11	$5 \cdot 90$	$6(11,11,5)$
	androstan-7-one	18	$9 \cdot 27$	$9 \cdot 24$	H-17	$6 \cdot 30$	$\mathrm{m}(15)$
647	$3 \beta, 11 \alpha$-Diacetoxy- $5 \alpha-$	19	$8 \cdot 77$	8.79	H-3	$5 \cdot 34$	7(10,10,5,5
	androstane-7,17-dione \dagger	18	$9 \cdot 08$	$9 \cdot 04$	H-11	$4 \cdot 72$	$6(10,10,6)$
648	$9 \alpha, 16 \alpha$-Dihydroxy-5 α -	19	8.74 9.28	8.75 9.28	H-16	$5 \cdot 45$	$\mathrm{m}(18)$
	androstane-3,11-dione	18	9.28	$9 \cdot 28$			
649	$9 \alpha, 16 \beta$-Dihydroxy-5 α -	19	8.72	$8 \cdot 72$	H-16	$5 \cdot 49$	$\mathrm{m}(17)$
	androstane-3,11-dione	18	$9 \cdot 04$	$9 \cdot 04$			
650	$11 \alpha, 16 \beta$-Dihydroxy- $\overline{\text { a }} \alpha$ -	19	$8 \cdot 60$	$8 \cdot 56$	H-11	5.86	$6(10,10,5)$
	androstane-3,7-dione	18	$9 \cdot 01$	8.98	H-16	$5 \cdot 48$	$\mathrm{m}(15)$

* Calculated using the shift values in ref. 6 and Table 3 of this paper. \dagger Not fully characterised; no analytical figures available. The proposed structures are based on the results of spectrometric examination, and of conversions [by oxidation, or, in the case of the diacetate (no. 647), by hydrolysis and oxidation] into known ketones.
a Ref. 6.
medium B, 2 d , extraction $\mathrm{II} \longrightarrow 1.45 \mathrm{~g}$ combined extracts. P.l.c. [3 large plates, $1 \times$ petrol $-\mathrm{Me}_{2} \mathrm{CO}$ (3:1)] gave s.m. (67 mg), $3 \beta, 7 \beta$-dihydroxy- 5α-androstan-17-one (no. 250) (421 mg), m.p. and mixed m.p. 241-243 ${ }^{\circ}$, and $3 \beta, 6 \alpha$-dihydroxy- 5α-androstan-17-one (no. 246) (244 mg), $\mathrm{m} . \mathrm{p}$. and mixed m.p. 222-223 ${ }^{\circ}$.
6α-Hydroxy-5 α-androstan-17-one (no. 552). ${ }^{11}$ (a) Incubation with Ra: 1.0 g in $\mathrm{EtOH}(50 \mathrm{ml}), 25$ flasks, medium $\mathrm{B}, 4 \mathrm{~d}$, extraction II \longrightarrow mycelial and broth extracts. The mycelial extract yielded s.m. (41 mg). The broth extract was chromatographed on $\mathrm{Al}_{2} \mathrm{O}_{3}(5 \%$ deactivated; $50 \mathrm{~g})$. Petrol-CHCl ${ }_{3}(1: 3)$ eluted $6 \alpha, 11 \alpha$-dihydroxy5α-androstan-17-one (no. 529) (730 mg), m.p. (from $\mathrm{Me}_{2} \mathrm{CO}-$ hexane) and mixed ${ }^{10}$ m.p. $183-185^{\circ} . \mathrm{CHCl}_{3}-\mathrm{MeOH}$ $(95: 5)$ gave a mixture, which was purified by p.l.c. [2 small plates, $2 \times$ EtOAc] to give $3 \beta, 6 \alpha$-dihydroxy- $5 \alpha-$ androstan-17-one (no. 246) (53 mg), m.p. and mixed m.p. $225-228^{\circ}$, and 5α-androstane- $6 \alpha, 11 \alpha, 17 \beta$-triol (no. 462) (50 mg), m.p. (from $\mathrm{Me}_{2} \mathrm{CO}$-hexane) and mixed ${ }^{6} \mathrm{~m} . \mathrm{p}$. $228-230^{\circ}$.
(b) Incubation with $\mathrm{Rc}: 1.0 \mathrm{~g}$ in $\mathrm{EtOH}(50 \mathrm{ml})$, medium B, 25 flasks, 4 d, extraction II \longrightarrow mycelial and broth extracts. Purification of the mycelial extract gave s.m. (371 mg). The broth extract was chromatographed on $\mathrm{Al}_{2} \mathrm{O}_{3} \quad(5 \%$ deactivated; 50 g$)$. Petrol- CHCl_{3} (1:5) eluted $6 \alpha, 11 \alpha$-dihydroxy- 5α-androstan-17-one (no. 529) (369 mg), m.p. and mixed m.p. $182-185^{\circ} . \mathrm{CHCl}_{3}-\mathrm{MeOH}$ (19:1) eluted material which was purified by p.l.c. [1 small plate, $2 \times \mathrm{EtOAc}$] to give $3 \beta, 6 \alpha$-dihydroxy- 5α -androstan-17-one (no. 246) (31 mg), m.p. and mixed m.p. $225-228^{\circ}$.

17 β-Hydroxy-5 α-androstan-3-one (no. 411). (a) Incubation with Ra: 1.0 g in $\mathrm{EtOH}(50 \mathrm{ml}), 25$ flasks, medium B, 4 d , extraction II \longrightarrow mycelial and broth extracts. The mycelial extract gave s.m. (207 mg). The broth extract
was chromatographed on $\mathrm{Al}_{2} \mathrm{O}_{3}(5 \%$ deactivated; 60 g$)$. Petrol- $\mathrm{CHCl}_{3}(1: 4)$ eluted material which was further purified by p.l.c. [1 small plate, $2 \times$ EtOAc] to give $5,17 \beta-$ dihydroxy- 5α-androstan- 3 -one (no. 585) (32 mg), m.p.

Table 3

The effect of substituents ($\Delta \tau_{2}, \mathrm{CDCl}_{3}$) on $19-\mathrm{H}$ and $18-\mathrm{H}$ signals
A positive $\Delta \tau_{2}$ indicates a shift to higher field. For substituents marked * the present values are preferable to those given earlier. ${ }^{a}$ Values marked \dagger are based on one or two examples only.

Substituent			Substituent		
$5 \alpha, 14 \alpha$-Steroids	19-H	18-H	$5 \alpha, 14 \alpha$-Steroids	19-H	18-H
$1,3-(\mathrm{CO})_{2}{ }_{1}$	-0.46 -0.29	-0.04 -0.07	$\Delta^{15}-17,17_{-O-}^{-O-}$	$-0.03 \dagger$	$-0.22 \dagger$
$1,6-(\mathrm{CO})_{2}-\Delta^{2}$ $1 \beta-\mathrm{OH}-3-\mathrm{CO}$	-0.29 -0.10	-0.07 +0.01	$\Delta^{15}-17 \beta-\mathrm{OH}$	$-0.03 \dagger$	$-0.12 \dagger$
$1 \beta-\mathrm{OH}-\Delta^{2 *}$	-0.01	-0.02	$16-\mathrm{CO}-17 \beta-\mathrm{OAc}$	-0.04	-0.13
$1 \beta-\mathrm{OAc}-3-\mathrm{CO}$	$-0.33 \dagger$	$-0.01 \dagger$	16,16-O-1	0.00	-0.21
$1 \alpha, 2 \alpha-\mathrm{O}-3-\mathrm{CO}$	-0.06	$0 \cdot 00$	16,16-(OMe)	-0.01	-0.09
$1 \beta, 11 \alpha-\mathrm{O}$	-0.06	-0.0.3	$16,16-(\mathrm{OMe})_{\mathbf{2}}$ $16 \alpha-\mathrm{OH}-17-\mathrm{CO}$	-0.01 -0.03	-0.09 -0.26
${ }^{\Delta^{1}} \mathrm{CO}-3 \beta-\mathrm{OH}$	-0.08 +0.01	-0.04 +0.04	$16 \alpha-\mathrm{OH}-17-\mathrm{CO}$ $16 \alpha, 17 \alpha-(\mathrm{OH})$	-0.03 0.00	$-0 \cdot 26$ 0.00
$\stackrel{2-\mathrm{CO}-3 \beta-\mathrm{OH}}{2-\mathrm{CO}-3 \beta-\mathrm{OAc}}$	+0.01 +0.01	+0.04 0.00	$16 \alpha, 17 \alpha-(\mathrm{OH})_{2}$ $16 \alpha, 17 \beta-(\mathrm{OH})_{2}$	0.00 -0.01	0.00 -0.06
$2,7-(\mathrm{CO})_{2}-\Delta^{3}{ }^{\text {, } 5}$	-0.50	-0.06	$16 \alpha-\mathrm{OAC}-17-\mathrm{CO}$	-0.03	-0.26
2,2 -	-0.12	-0.01	$16 \alpha-\mathrm{OAc}-17 \beta-\mathrm{OH}$	-0.03	-0.10
$2,2-\mathrm{O}$	-0.12	-0.01	$16 \alpha, 17 \beta-(\mathrm{OAC})_{2}$	-0.02	-0.09
$2 \alpha-\mathrm{OAc}-3-\mathrm{CO}$	-0.35	-0.03	16β-OAc-17-CO	-0.04	-0.27
$2 \beta, 3 \beta$-О	-0.07	$+0.01$	16β-OAc $-17 \alpha-\mathrm{OH}$	-0.04	-0.09
Δ^{2}	$+0.01$	-0.02	$16 \beta-\mathrm{OAc}-17 \beta-\mathrm{OH}$	-0.03	-0.12
$\Delta^{2}-3-\mathrm{OAc}$	-0.03	$0 \cdot 00$	16α-OEt	$0 \cdot 00$	-0.01
$\Delta^{2}-3-\mathrm{OMe}$	$+0.04$	-0.01	16β-OMe	$0 \cdot 00$	-0.18
$3-\mathrm{CO}-4 \alpha, 5 \alpha-\mathrm{O}$	-0.27	-0.04	$16 \alpha, 17 \alpha-0$	$0 \cdot 00$	-0.03
3-CO-9 $\alpha, 11 \alpha-\mathrm{O}$	-0.49	-0.06	$16 \beta, 17 \beta-\mathrm{O}$	0.00	-0.12
$3-\mathrm{CO}-\Delta^{4}{ }^{6}$	-0.35	-0.12	Δ^{16}	-0.04	-0.69
			$\Delta^{16-17-A c}$	-0.02	-0.18
3,3 -S-	-0.02	+0.01	$\Delta^{16}-16-\mathrm{Me}-17-\mathrm{Ac}$	-0.03	-0.27
$3-\mathrm{OMe}-\Delta^{3}{ }^{5}$	-0.16	-0.03	$\Delta^{16-17-O A c}$	-0.03	-0.20
$3 \alpha, 4 \alpha-\mathrm{O}$	+0.01 +0.04	+0.04 -0.01	17,17-S-	$-0.04 \dagger$	$-0.20 \dagger$
$\Delta^{\mathbf{8}}{ }^{\mathbf{3} 5,8-7-\mathrm{CO}}$	$+0.04$	-0.01	17,17-S-	-0.01	-0.90
$\Delta^{\mathbf{3}, 5,8-7-C O}$	$-0.55 \dagger$	$0.00 \dagger$	$17 \alpha-\mathrm{Ac}$	-0.01	-0.20
Δ^{4}	-0.21	-0.02	17α-OAc	-0.01	-0.04
$\triangle^{ \pm}-6 \beta-\mathrm{OAc}$	-0.30	-0.06			
$\overline{\mathrm{j}}$ - $\mathrm{OH}-6-\mathrm{CO}$	$0 \cdot 00$	$0 \cdot 00$	$5 \beta, 14 \alpha$-Steroids		
$\bar{\sim} \alpha, 6 \beta-(\mathrm{OH})_{2}$	-0.37	-0.02	$2 \beta-\mathrm{OAc}$	-0.07	0.00
$5 \alpha-\mathrm{OH}-7-\mathrm{CO}$	-0.37	$0 \cdot 00$	3-CO-4 $\beta, 5 \beta-\mathrm{O}$	-0.22	-0.04
$5 \alpha, 6 \alpha-\mathrm{O}$	-0.12	+0.04	3,3-(OMe) ${ }_{2}$	-0.02	$0 \cdot 00$
$6 \alpha-\mathrm{OAc} *$	-0.06	$0 \cdot 00$	$3 \alpha-\mathrm{OH}$	-0.01	$0 \cdot 00$
$7 \alpha, 9 \alpha-(\mathrm{OH})_{2}$	-0.10	$+0.02$	$3 \beta-\mathrm{OH}$	-0.06	-0.01
7β-OAc *	-0.05	-0.03	$3 \beta, 4 \beta$-O	+0.04	-0.01
$7 \beta-\mathrm{OAc}-17-\mathrm{CO}$	-0.07	-0.15	$\Delta^{3}-5 \beta-\mathrm{OH}$	-0.06	-0.01
$7,7 \mathrm{O}-1$	-0.03	-0.01	${ }^{5} \beta$ - OH	$+0.02 \dagger$	$0.00 \dagger$
$\Delta^{7}-15-\mathrm{CO}$	+0.01	-0.21	$5 \beta-\mathrm{OH}-6-\mathrm{CO}$ $5 \beta, 6 \beta-\mathrm{O}$	+0.22 -0.03 \dagger	-0.01 +0.02
$9 \alpha-\mathrm{OH}-11-\mathrm{CO}$	-0.24	$+0.02$	$6 \beta-\mathrm{OAc}$	-0.09	-0.05
$\Delta^{9}\left({ }^{11}\right)$	-0.14	$+0.04$			
$\Delta^{9}(11)-12-\mathrm{CO}$	-0.27	-0.23	$5 \alpha, 13 \alpha$-Steroids		
$11 \alpha, 12 \beta-(\mathrm{OH})_{2}$	-0.11	-0.03	15-CO	-0.05	-0.06
$11 \alpha, 12 \beta$-(OAc) ${ }_{2}$	-0.12	-0.14	$15 \alpha-\mathrm{OH}$	-0.01	-0.25
$11 \beta-\mathrm{OAc}$	-0.10	-0.13	$15 \alpha-\mathrm{OH}-\Delta^{16}$	$+0.02$	-0.29
$11 \alpha, 12 \alpha-\mathrm{O}$	-0.07	-0.12	$15 \alpha, 16 \alpha-\mathrm{O}-17-\mathrm{CO}$	$+0.05 \dagger$	$-0.28 \dagger$
12-CO ${ }^{*}$	-0.09	-0.32	$\Delta^{15}-17-\mathrm{CO}$	$+0.02 \dagger$	$-0.22 \dagger$
12,17-(CO) ${ }_{2}$	-0.11	-0.52	$16 \alpha, 17 \alpha-\mathrm{O}$	0.00	-0.26
$12 \alpha, 17 \beta-(\mathrm{OH})_{2}$	$+0.03 \dagger$	$+0.01 \dagger$	$16 \beta, 17 \beta-\mathrm{O}$	0.00	+0.02
$12 \beta-\mathrm{OH}$ *	-0.02	-0.02	$\Delta^{16}-17-\mathrm{OAc}$	$+0.02$	-0.14
$12 \beta-\mathrm{OH}-17-\mathrm{CO}$	-0.03	-0.25	17-CO	$+0.06$	$-0 \cdot 11$
$12 \beta, 17 \beta-(\mathrm{OH})_{2}$	-0.04	$-0 \cdot 13$			
12α-OAc ${ }^{*}$	$0 \cdot 00$	-0.09	$5 \alpha, 14 \beta$-Steroids		
$14 \alpha-\mathrm{OH}$	$0 \cdot 00$	-0.12	7-CO	-0.19	0.00
$14 \alpha, 15 \alpha-\mathrm{O}$	-0.03	$\dagger-0.23 \dagger$	${ }_{7} \beta-\mathrm{OH}$	-0.03	-0.02
Δ^{14}	-0.03	-0.32	12-CO	-0.09	-0.22
$\Delta^{14} 16-\mathrm{CO}$	$-0.13 \dagger$	$-0.55 \dagger$	$12,15-(\mathrm{CO})_{2}$	-0.04	-0.38
$\Delta^{16}-17-\mathrm{CO}$	$-0.06 \dagger$	$-0.42 \dagger$	$12 \alpha-\mathrm{OH}$	-0.01	-0.02
$\Delta^{14}-17-\mathrm{OH}$	$-0.05 \dagger$	$-0.40 \dagger$	12β-OH	-0.03	$+0.02$
$\Delta^{16-17,17}{ }^{-0}$	$-0.03 \dagger$	$-0.38 \dagger$	$14 \beta-\mathrm{OH}-15-\mathrm{CO}$	$+0.02$	-0.06
$\Delta^{14,14}$ - ${ }^{16}$	$-0.03+$		$14 \beta, 15 \alpha-(\mathrm{OH})_{2}$	$+0.02$	-0.01
$\Delta^{16,16}$ $15-\mathrm{CO}-\Delta^{16}$	$-0.11 \dagger$ -0.07	$-0.32 \dagger$ -0.20	$14 \beta, 15 \beta-(\mathrm{OH})_{2}$	-0.05	-0.23 -0.05
$15-\mathrm{CO}-\Delta^{16}$	-0.07	-0.29	${ }_{15 \beta-15 \beta-O}$	$-0.03 \dagger$ +0.03	$-0.05 \dagger$ -0.18
$15,15 \mathrm{~S}-1$	$-0.05 \dagger$	$-0.20 \dagger$	$15-\mathrm{CO}-\Delta^{18}$	$+0.01+$	$-0.22 \dagger$
$15 \beta-\mathrm{OH}-\Delta^{14}$	-0.09	-0.40	$15,15^{-5}$	$+0.04 \dagger$	$-0.13 \dagger$
15β-OAc	-0.06	-0.26	$15,15-\mathrm{S}-$	$+0.04$	-0.13
15β-OMe	$-0.04 \dagger$	$-0.22 \dagger$	$15 \alpha-\mathrm{OH}$	$+0.03$	-0.03
15β-OMe- Δ^{16}	$-0.07 \dagger$	$-0.36 \dagger$	$15 \beta-\mathrm{OH}$	$0 \cdot 00$	-0.04
15 β,16 β-O-17-CO	$-0.06 \dagger$	$-0.46 \dagger$			

(from $\mathrm{Me}_{2} \mathrm{CO}-$ hexane) and mixed ${ }^{1} \mathrm{~m}$. p. 237-239 ${ }^{\circ}$. Petrol$\mathrm{CHCl}_{3}(1: 8)$ gave $6 \alpha, 17 \beta$-dihydroxy- 5α-androstan- 3 -one (no. 590) (103 mg), m.p. (from $\mathrm{Me}_{2} \mathrm{CO}-$ hexane) and mixed ${ }^{1}$ m.p. 207-209.$~ \mathrm{CHCl}_{3}$ and $\mathrm{CHCl}_{3}-\mathrm{EtOAc}(10: 1)$ eluted material which was purified by p.l.c. [3 small plates,
${ }^{11}$ The preparation of this compound will be described in a later paper.
$\left.3 \times \mathrm{CHCl}_{3}-\mathrm{MeOH}(10: 1)\right]$ to give $11 \alpha, 17 \beta$-dihydroxy5α-androstan- 3 -one (no. 296) (192 mg), m.p. (from $\mathrm{Me}_{2} \mathrm{CO}-$ hexane) and mixed ${ }^{3} \mathrm{~m} . \mathrm{p}$. 203-204 , and 5α-androstane$3 \beta, 7 \beta, 17 \beta$-triol (no. 617) (42 mg), m.p. (from $\mathrm{Me}_{2} \mathrm{CO}-$ hexane) and mixed ${ }^{1} \mathrm{~m} . \mathrm{p}$. 218-220 ${ }^{\circ} \mathrm{CHCl}_{3}-\mathrm{MeOH}(4: 1)$ gave material which was purified by p.l.c. [1 small plate, $\left.3 \times \mathrm{CHCl}_{3}-\mathrm{MeOH}(10: 1)\right]$ to give 5α-androstane- $3 \beta, 6 \alpha, 17 \beta-$ triol (no. 611) (30 mg), m.p. (from $\mathrm{Me}_{2} \mathrm{CO}$) and mixed ${ }^{1}$ m.p. $238-240^{\circ}$, and 5α-androstane- $3 \beta, 11 \alpha, 17 \beta$-triol (no. 521) (30 mg), m.p. (from $\mathrm{Me}_{2} \mathrm{CO}$) and mixed ${ }^{4}$ m.p. $245-$ 248°.
(b) Incubation with $\mathrm{Rc}: 1.0 \mathrm{~g}$ in EtOH (50 ml), 25 flasks, medium $\mathrm{B}, 2 \mathrm{~d}$, extraction $\mathrm{II} \longrightarrow 1.2 \mathrm{~g}$ combined extracts. P.l.c. [3 large plates, $1 \times$ petrol $-\mathrm{Me}_{2} \mathrm{CO}(3: 1)$] gave s.m. (193 mg), $6 \alpha, 17 \beta$-dihydroxy- 5α-androstan- 3 -one (no. 590) $(279 \mathrm{mg}), \mathrm{m} . \mathrm{p}$. and mixed m.p. $206-209^{\circ}$, and $11 \alpha, 17 \beta-$ dihydroxy-5 α-androstan-3-one (no. 296) (222 mg), m.p. and mixed m.p. 198-201 .
$3 \alpha-H y d r o x y-5 \alpha-a n d r o s t a n-17$-one (no. 146). Incubation with $\mathrm{Ra}: 800 \mathrm{mg}$ in $\mathrm{EtOH}(40 \mathrm{ml}), 20$ flasks, medium B, 2 d , extraction II $\rightarrow 1.28 \mathrm{~g}$ combined extracts. Several crystallisations from $\mathrm{Me}_{2} \mathrm{CO}$ gave $3 \alpha, 11 \alpha$-dihydroxy- $5 \alpha-$ androstan-17-one (no. 242) (190 mg), m.p. (from $\mathrm{Me}_{2} \mathrm{CO}-$ hexane) and mixed ${ }^{9} \mathrm{~m} . \mathrm{p}$. 191-193 ${ }^{\circ}$. P.I.c. [2 large plates, $2 \times$ EtOAc] of the material from the mother liquors yielded more $3 \alpha, 11 \alpha$-dihydroxy- 5α-androstan-17-one (no. 242) (60 mg), and $3 \alpha, 7 \beta$-dihydroxy- 5α-androstan-17-one (no. 241) (71 mg), m.p. (from $\mathrm{Me}_{2} \mathrm{CO}-$ hexane) and mixed ${ }^{1} \mathrm{~m} . \mathrm{p}$. $197-200^{\circ}$.
5α-Androstane-3,7-dione (no. 36). (a) Incubation with $\mathrm{Ra}: 1.0 \mathrm{~g}$ in EtOH (50 ml), 25 flasks, medium B, 4 d , extraction II \longrightarrow mycelial and broth extracts. Purification of mycelial extract gave $\mathrm{s} . \mathrm{m} .(32 \mathrm{mg})$. The broth extract was chromatographed on $\mathrm{Al}_{2} \mathrm{O}_{3}$ (5% deactivated; 70 g) and the various fractions were further purified by p.l.c. (development with $\mathrm{Et}_{2} \mathrm{O}$) to give 16β-hydroxy- $5 \alpha-$ androstane-3,7-dione (no. 207) (158 mg), m.p. (from $\mathrm{Me}_{2} \mathrm{CO}$-hexane) and mixed ${ }^{1} \mathrm{~m} . \mathrm{p} .185-186^{\circ} ; 17 \alpha-$ hydroxy5α-androstane-3,7-dione (no. 642) (25 mg), m.p. 203-205 (from $\mathrm{Me}_{2} \mathrm{CO}-$ hexane), $[\alpha]_{\mathrm{D}}-59^{\circ}(c 0 \cdot 5)$ (Found: $\mathrm{C}, 75 \cdot 1$; $\mathrm{H}, \mathbf{9 . 2} . \mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{3}$ requires $\mathrm{C}, 75 \cdot 0 ; \mathrm{H}, 9 \cdot 3 \%$), $\nu_{\text {max }} 1715$ $\mathrm{cm}^{-1} ; 3 \beta$-hydroxy-5 α-androstane-7,16-dione (no. 636) (25 mg), m.p. 189-191 ${ }^{\circ}$ (from $\mathrm{Me}_{2} \mathrm{CO}-$ hexane), $[\alpha]_{\mathrm{D}}-239^{\circ}$ (c 0.5) (Found: $\mathrm{C}, 75 \cdot 0 ; \mathrm{H}, \mathbf{9 . 2} . \mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{3}$ requires $\mathrm{C}, 75 \cdot 0$; $\mathrm{H}, 9 \cdot 3 \%$), $\nu_{\text {max }} 1745$ and $1712 \mathrm{~cm}^{-1} ; 16 \alpha$-hydroxy- $5 \alpha-$ androstane-3,7-dione (no. 641) (30 mg), m.p. 172-173 ${ }^{\circ}$ (from $\mathrm{Me}_{2} \mathrm{CO}$-hexane), $[\alpha]_{\mathrm{D}}-52^{\circ}(c 0 \cdot 5)$ (Found: C, 74.9; $\mathrm{H}, \mathbf{9 . 4} . \quad \mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{3}$ requires $\mathrm{C}, \mathbf{7 5 . 0} ; \mathrm{H}, \mathbf{9 . 3} \%$), $\nu_{\text {max }} 1716$ $\mathrm{cm}^{-1} ; 3 \beta, 16 \beta$-dihydroxy-5 α-androstan-7-one (no. 263) (315 mg), m.p. (from $\mathrm{Me}_{2} \mathrm{CO}-$ hexane) and mixed ${ }^{1}$ m.p. $234-$ $236^{\circ} ; 3 \alpha, 16 \beta$-dihydroxy- 5α-androstan-7-one (no. 243) (103 mg), m.p. (from $\mathrm{Me}_{2} \mathrm{CO}$-hexane) and mixed ${ }^{10} \mathrm{~m} . \mathrm{p} .266-$ 267°; and $11 \alpha, 16 \beta$-dihydroxy-5 α-androstane-3,7-dione (no. 650) (38 mg), m.p. 255-257 ${ }^{\circ}$ (from $\mathrm{Me}_{2} \mathrm{CO}$-hexane), $[\alpha]_{\mathrm{D}}-63^{\circ}(c \quad 0.5)$ (Found: C, $71.35 ; \mathrm{H}, 8.7 . \mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{4}$ requires $\mathrm{C}, 71 \cdot 2 ; \mathrm{H}, 8.8 \%$), $\nu_{\text {max }} 1713 \mathrm{~cm}^{-1}$.
(b) Incubation with Rc: 1.0 g in EtOH (50 ml), 25 flasks, medium B, 4 d , extraction $\mathrm{II} \longrightarrow$ mycelial and broth extracts. The mycelial extract gave s.m. $(72 \mathrm{mg})$. The broth extract was filtered through $\mathrm{Al}_{2} \mathrm{O}_{3}$ (5% deactivated; 20 g) to give two fractions which were purified by p.l.c. The less polar fraction $[250 \mathrm{mg}$, on 1 large plate, $3 \times$ $\left.\mathrm{Et}_{2} \mathrm{O}\right]$ gave 11α-hydroxy- 5α-androstane- 3,7 -dione (no. 203) (42 mg), m.p. (from $\mathrm{Me}_{2} \mathrm{CO}$-hexane) and mixed ${ }^{4} \mathrm{~m} . \mathrm{p}$. 185 - 186°; 16β-hydroxy- 5α-androstane-3,7-dione (no. 207)
(95 mg), m.p. and mixed m.p. $185-186^{\circ} ; 17 \alpha$-hydroxy$5 \alpha$-androstane- 3,7 -dione (no. 642) (43 mg), m.p. and mixed m.p. 203-205 ; and 16α-hydroxy- 5α-androstane- 3,7 -dione (no. 641) (27 mg), m.p. and mixed m.p. 172- 173°. The more polar fraction [420 mg , on 1 large plate, $4 \times$ petrol$\mathrm{Me}_{2} \mathrm{CO}$ (2:1)] gave $3 \beta, 11 \alpha$-dihydroxy- 5α-androstan- 7 -one (no. 254) (211 mg), m.p. (from $\mathrm{Me}_{2} \mathrm{CO}-$ hexane) and mixed ${ }^{4}$ m.p. 205-208 ; $3 \beta, 16 \beta$-dihydroxy- 5α-androstan-7-one (no. 263) (60 mg), m.p. and mixed m.p. $234-236^{\circ}$; and $11 \alpha, 16 \beta-$ dihydroxy- 5α-androstane-3,7-dione (no. 650) (54 mg), m.p. and mixed m.p. 255-257 ${ }^{\circ}$.
(c) Transformations: Oxidation of 16α-hydroxy- $5 \alpha-$ androstane-3,7-dione (no. 641) and of 3β-hydroxy- 5α -androstane-7,16-dione (no. 636) with $8 \mathrm{~N}-\mathrm{H}_{2} \mathrm{CrO}_{4}$ gave 5α-androstane- $3,7,16$-trione (no. 82), m.p. (from $\mathrm{Me}_{2} \mathrm{CO}-$ hexane) and mixed ${ }^{10} \mathrm{~m} . \mathrm{p}$. $240-242^{\circ}$. Oxidation of 17α-hydroxy- 5α-androstane-3,7-dione (no. 642) and of $11 \alpha, 16 \beta$-dihydroxy- 5α-androstane-3,7-dione (no. 650) gave, respectively, 5α-androstane- $3,7,17$-trione (no. 84), m.p. (from $\mathrm{Me}_{2} \mathrm{CO}$-hexane) and mixed ${ }^{10} \mathrm{~m} . \mathrm{p}$. 239-241 , and 5α-androstane-3,7,11,16-tetraone (no. 546), m.p. (from $\mathrm{Me}_{2} \mathrm{CO}$-hexane) and mixed ${ }^{1}$ m.p. 260-262 .
5α-Androstane-3,11-dione (no. 37). (a) Incubation with Ra: 1.0 g in EtOH (50 ml), 25 flasks, medium B, 4 d , extraction II \longrightarrow mycelial and broth extracts. Purification of the mycelial extract gave s.m. (161 mg). The broth extract was chromatographed on $\mathrm{Al}_{2} \mathrm{O}_{3}(5 \%$ deactivated; 60 g). Elution with petrol- CHCl_{3} (1:1) gave 16β-hydroxy- 5α-androstane-3,11-dione (no. 564) (65 mg), m.p. (from $\mathrm{Me}_{2} \mathrm{CO}$-hexane) and mixed ${ }^{1}$ m.p. 174$176 \cdot 5^{\circ} . \mathrm{CHCl}_{3}$ eluted $3 \beta, 16 \beta$-dihydroxy- 5α-androstan-11one (no. 264) (180 mg), m.p. (from $\mathrm{Me}_{2} \mathrm{CO}$-hexane) and mixed ${ }^{10}$ m.p. $232-234^{\circ} . \mathrm{CHCl}_{3}-\mathrm{MeOH}(9: 1)$ eluted a mixture which was separated by p.l.c. [1 large plate, $2 \times \mathrm{EtOAc}$ into $9 \alpha, 16 \beta$-dihydroxy-5 α-androstane-3,11-dione (no. 649) (218 mg), m.p. 219-221 ${ }^{\circ}$ (from $\mathrm{Me}_{2} \mathrm{CO}$-hexane), $[\alpha]_{\mathrm{D}}+91^{\circ}(c 1 \cdot 0)$ (Found: C, $71.35 ; \mathrm{H}, 8.8 . \mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{4}$ requires $\mathrm{C}, 71.2 ; \mathrm{H}, 8.8 \%),{ }_{\text {max }} 1710 \mathrm{~cm}^{-1}$, and $9 \alpha, 16 \alpha$-di-hydroxy-5 α-androstane-3,11-dione (no. 648) (62 mg), m.p. 247-248.5 (from $\mathrm{Me}_{2} \mathrm{CO}$-hexane), $[\alpha]_{\mathrm{D}}+96^{\circ}$ ($\left.\begin{array}{c}c \\ 0.5\end{array}\right)$ (Found: $\mathrm{C}, 71 \cdot 1 ; \mathrm{H}, 8.9 . \mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{4}$ requires $\mathrm{C}, 71 \cdot 2$; $\mathrm{H}, 8.8 \%), \nu_{\text {max. }} 1710 \mathrm{~cm}^{-1}$.
(b) Incubation with $\mathrm{Rc}: 1.0 \mathrm{~g}$ in $\mathrm{EtOH}(50 \mathrm{ml})$, 25 flasks, medium B, 4 d , extraction $\mathrm{II} \longrightarrow$ mycelial and broth extracts. The mycelial extract gave s.m. (173 mg). The broth extract was chromatographed on $\mathrm{Al}_{2} \mathrm{O}_{3}(5 \%$ deactivated; 50 g$)$. Petrol- $\mathrm{CHCl}_{3}(1: 2)$ eluted material which was separated by p.l.c. [1 large plate, $1 \times$ EtOAc] into 7β-hydroxy-5 α-androstane-3,11-dione (no. 639) (82 mg), m.p. 207-210 (from $\mathrm{Me}_{2} \mathrm{CO}$-hexane), $[\alpha]_{\mathrm{D}}+82^{\circ}$ (c 0.9) (Found: C, 74.8; H, 9.3. $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{3}$ requires C , $75 \cdot 0$; $\mathrm{H}, 9.3 \%$), $\nu_{\text {max }} 3610$ and $1712 \mathrm{~cm}^{-1}$, and 16β-hydroxy5α-androstane-3,11-dione (no. 564) (126 mg), m.p. and mixed m.p. 173-176 ${ }^{\circ}$. Petrol- $\mathrm{CHCl}_{3}(1: 3)$ eluted $6 \alpha-$ hydroxy- 5α-androstane-3,11-dione (no. 638) (177 mg), m.p. $168-170^{\circ}$ (from $\mathrm{Me}_{2} \mathrm{CO}$-hexane), $[\alpha]_{\mathrm{D}}+86^{\circ}$ (c $0 \cdot 8$) (Found: C, $75 \cdot 2 ; \mathrm{H}, 9 \cdot 2 . \mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{3}$ requires $\mathrm{C}, 75 \cdot 0 ; \mathrm{H}, 9 \cdot 3 \%$), $\nu_{\max } 3620$ and $1710 \mathrm{~cm}^{-1} . \mathrm{CHCl}_{3}$ and $\mathrm{CHCl}_{3}-\mathrm{MeOH}$ ($99: 1$) gave a mixture which was separated by p.l.c. [2 small plates, $1 \times$ EtOAc, followed by 1 small plate, $5 \times \mathrm{Et}_{2} \mathrm{O}$] into $9 \alpha, 16 \beta$-dihydroxy- 5α-androstane-3,11-dione (no. 649) (15 mg), m.p. and mixed m.p. 219-221 ${ }^{\circ}$ and material [$22 \mathrm{mg}, \vee_{\text {max }}\left(\mathrm{CHCl}_{3}\right) 3565$ and $1703 \mathrm{~cm}^{-1}$] presumed to be $3 \beta, 7 \beta$-dihydroxy- 5α-androstan-11-one (no. 644).
(c) Transformations: On oxidation with $8 \mathrm{~N}-\mathrm{H}_{2} \mathrm{CrO}_{4}, 9 \alpha$,$16 \beta$-dihydroxy- 5α-androstane-3,11-dione (no. 649) and the 16α-epimer (no. 648) gave 9α-hydroxy- 5α-androstane-$3,11,16$-trione (no. 643), m.p. 215-216 ${ }^{\circ}$ (from $\mathrm{Me}_{2} \mathrm{CO}-$ hexane), $[\alpha]_{\mathrm{D}}-72^{\circ}(c 0.45)$ (Found: C, $72.0 ; \mathrm{H}, 8.1$. $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{4}$ requires C, $71 \cdot 7 ; \mathrm{H}, 8 \cdot 2 \%$), $\nu_{\text {max. }} 3600,1746$, and $1712 \mathrm{~cm}^{-1} ; 7 \beta$-hydroxy- 5α-androstane- 3,11 -dione (no. 639) and $3 \beta, 7 \beta$-dihydroxy- 5α-androstan-11-one (no. 644) gave 5α-androstane-3,7,11-trione (no. 80), m.p. (from $\mathrm{Me}_{2} \mathrm{CO}-$ hexane) and mixed ${ }^{4}$ m.p. $176-177^{\circ}$; and 6α-hydroxy5α-androstane- 3,11 -dione (no. 638) gave 5α-androstane-3,6,11-trione (no. 72), m.p. (from $\mathrm{Me}_{2} \mathrm{CO}$-hexane) and mixed ${ }^{3} \mathrm{~m} . \mathrm{p}$. $191-192^{\circ}$.
$5 \alpha-A n d r o s t a n e-7,17-d i o n e$ (no. 51). (a) Incubation with Ra: 1.0 g in EtOH (50 ml), 25 flasks, medium B, 4 d , extraction II \longrightarrow mycelial and broth extracts. The mycelial extract gave s.m. (110 mg). The broth extract was chromatographed on $\mathrm{Al}_{2} \mathrm{O}_{3}(5 \%$ deactivated; 60 g$)$. Petrol- $\mathrm{CHCl}_{3}(1: 2)$ eluted a mixture (70 mg), indicated by n.m.r. examination to consist of 1α-hydroxy- 5α-andro-stane-7,17-dione (no. 634) (40 mg) and 11α-hydroxy- 5α -androstane-7,17-dione (no. 640) (30 mg). [Repeated p.l.c. failed to separate this mixture; the constants of the $11 \alpha-$ hydroxy-dione (no. 640) are given in the following incubation.] Petrol-CHCl ${ }_{3}(1: 3)$ eluted a mixture which, on crystallisation from $\mathrm{Me}_{2} \mathrm{CO}$-hexane, gave 3α-hydroxy$5 \alpha-$ androstane-7,17-dione (no. 556) (290 mg), m.p. (from $\mathrm{Me}_{2} \mathrm{CO}$-hexane) and mixed ${ }^{1} \mathrm{~m} . \mathrm{p} .220-223^{\circ}$. The material from the mother liquors was purified by p.l.c. [$3 \times$ $\mathrm{Et}_{2} \mathrm{O}$] to give 3β-hydroxy- 5α-androstane-7,17-dione (no. 558) (54 mg), m.p. and mixed m.p. 200-202. CHCl_{3} eluted $3 \beta, 17 \beta$-dihydroxy- 5α-androstan- 7 -one (no. 266) (62 mg), m.p. (from $\mathrm{Me}_{2} \mathrm{CO}-$ hexane) and mixed ${ }^{1}$ m.p. $195-$ 198°. $\mathrm{CHCl}_{3}-$ EtOAc ($1: 1$) eluted material which was purified by p.l.c. [1 small plate, $2 \times$ petrol $\left.-\mathrm{Me}_{2} \mathrm{CO}(1: 1)\right]$ to give $3 \alpha, 17 \beta$-dihydroxy- 5α-androstan-7-one (no. 245) (20 mg), m.p. (from $\mathrm{Me}_{2} \mathrm{CO}$-hexane) and mixed ${ }^{\mathbf{1}} \mathrm{m} . \mathrm{p}$. 195-198 ${ }^{\circ}$. EtOAc-MeOH (9:1) eluted polar material which was separated by p.1.c. [1 small plate, $4 \times$ petrol$\mathrm{Me}_{2} \mathrm{CO}$ (1:1)] into two fractions. Acetylation of one fraction gave material (18 mg ; $\nu_{\max } 1742,1735$, and 1712 cm^{-1}) formulated as $3 \beta, 11 \alpha$-diacetoxy- 5α-androstane-7,17dione (no. 647); acetylation of the other gave $3 \alpha, 11 \alpha$-di-acetoxy- 5α-androstane-7,17-dione (no. 602) (70 mg), m.p. (from $\mathrm{Et}_{2} \mathrm{O}$-hexane) and mixed ${ }^{1} \mathrm{~m} . \mathrm{p} .148-150^{\circ}$.
(b) Incubation with $\mathrm{Rc}: 1.0 \mathrm{~g}$ in $\mathrm{EtOH}(50 \mathrm{ml}), 25$ flasks, medium B, 4 d, extraction II \longrightarrow mycelial and broth extracts. The mycelial extract gave s.m. $(380 \mathrm{mg})$. The broth extract was chromatographed on $\mathrm{Al}_{2} \mathrm{O}_{3}$ (5% deactivated; 60 g). Petrol-CHCl $\mathrm{Cl}_{3}(1: 2)$ eluted a mixture which was separated by p.l.c. [2 small plates, $1 \times$ petrol $-\mathrm{Me}_{2} \mathrm{CO}$ ($1: 1$)] into 11α-hydroxy- 5α-androstane-7,17-dione (no. 640) (118 mg), m.p. $168-170^{\circ}$ (from $\mathrm{Me}_{2} \mathrm{CO}-$ hexane), $[\alpha]_{\mathrm{D}}$ $-26^{\circ}(c 0.7)$ (Found: C, 74.7; H, 9.2. $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{3}$ requires $\mathrm{C}, 75 \cdot 0 ; \mathrm{H}, 9 \cdot 3 \%$), $\nu_{\text {max. }} 3605,1742$, and $1711 \mathrm{~cm}^{-1}$, and 2β-hydroxy- 5α-androstane-7,17-dione (no. 635) (14 mg), m.p. 204-206 (from $\mathrm{Me}_{2} \mathrm{CO}$-hexane), $[\alpha]_{\mathrm{D}}+4^{\circ}$ (ce 0.5) (Found: $\mathrm{C}, 75 \cdot 1 ; \mathrm{H}, 9 \cdot 2 . \mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{3}$ requires $\mathrm{C}, 75 \cdot 0$; $\mathrm{H}, 9 \cdot 3 \%)$, $\nu_{\text {max. }} 3620,1742$, and $1713 \mathrm{~cm}^{-1}$. Petrol- CHCl_{3} ($\mathbf{I}: 3$) eluted material which was purified by p.l.c. [2 small plates, $3 \times \mathrm{Et}_{2} \mathrm{O}$] to give 3β-hydroxy- 5α-androstane-7,17dione (no. 558) (96 mg), m.p. and mixed m.p. 201-203 ${ }^{\circ}$, and a mixture (72 mg) indicated by n.m.r. examination to consist of 4α-hydroxy- 5α-androstane-7,17-dione (no. 637) (40 mg) and 3α-hydroxy- 5α-androstane- 7,17 -dione (no.
556) (32 mg). (Repeated p.1.c. failed to separate this mixture.) EtOAc and EtOAc-MeOH (9:1) eluted material which was separated by p.l.c. [1 small plate, $3 \times$ petrol- $\left.\mathrm{Me}_{2} \mathrm{CO}(1: 1)\right]$ into $11 \alpha, 17 \beta$-dihydroxy- 5α-androstan7 -one (no. 646) (54 mg), m.p. 196-198 (from EtOAc), $[\alpha]_{\mathrm{D}}-88^{\circ}(\mathrm{c} 0.42)$ (Found: C, 74.2; H, 9.8. $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{3}$ requires $\mathrm{C}, 74 \cdot 5 ; \mathrm{H}, 9.9 \%$), $\nu_{\text {max }} 3610$ and $1710 \mathrm{~cm}^{-1}$; $3 \beta, 17 \beta$-dihydroxy- 5α-androstan-7-one (no. 266) (30 mg), m.p. and mixed m.p. 199-202 ${ }^{\circ}$ and a fraction which, after acetylation, afforded material (25 mg) identical with that (see earlier) formulated as $3 \beta, 11 \alpha$-diacetoxy5α-androstane-7,17-dione (no. 647).
(c) Transformations: The mixture of 1α - and 11α-hydr-oxy-5 α-androstane-7,17-diones (nos. 634 and 640) was oxidised with $8 \mathrm{~N}-\mathrm{H}_{2} \mathrm{CrO}_{4}$. P.l.c. $[1 \times \mathrm{EtOAc}]$ of the product gave 5α-androstane-7,11,17-trione (no. 97), m.p. (from $\mathrm{Me}_{2} \mathrm{CO}-$ hexane) and mixed ${ }^{4} \mathrm{~m} . \mathrm{p} .171-173^{\circ}$, and 5α-androstane-1,7,17-trione (no. 67), m.p. (from $\mathrm{Me}_{2} \mathrm{CO}^{-}$ hexane) and mixed ${ }^{3}$ m.p. 235-237 ${ }^{\circ}$. Similarly, the mixture of 3α - and 4α-hydroxy- 5α-androstane- 7,17 -diones (nos. 556 and 637) afforded 5α-androstane-3,7,17-trione (no. 84), m.p. and mixed m.p. 241-243 ${ }^{\circ}$, and 5α-androstane-4,7,17-trione (no. 542), m.p. (from $\mathrm{Me}_{2} \mathrm{CO}$-hexane) and mixed ${ }^{1} \mathrm{~m}$. p. $210-212^{\circ}$. Oxidation of both 11α-hydroxy5α-androstane-7,17-dione (no. 640) and $11 \alpha, 17 \beta$-dihydroxy5α-androstan-7-one (no. 646) gave 5α-androstane-7,11,17trione (no. 97), m.p. and mixed m.p. $171-173^{\circ}$.

A solution of $3 \beta, 11 \alpha$-diacetoxy- 5α-androstane- 7,17 -dione (no. 647) (25 mg) in $\mathrm{MeOH}(10 \mathrm{ml})-2 \mathrm{~N}-\mathrm{NaOH}(1 \mathrm{ml})$ was kept at $40{ }^{\circ} \mathrm{C}$ for 20 h . The product was oxidised with $8 \mathrm{~N}-\mathrm{H}_{2} \mathrm{CrO}_{4}$ to give 5α-androstane-3,7,11,17-tetraone (no. 547), m.p. (from $\mathrm{Me}_{2} \mathrm{CO}$-hexane) and mixed ${ }^{1}$ m.p. $242-$ 246°.
5α-Androstane-11,17-dione (no. 54). (a) Incubation with Ra: 1.0 g in EtOH (50 ml), 25 flasks, medium B, 4 d , extraction II \longrightarrow mycelial and broth extracts. Purification of the mycelial extract gave s.m. (108 mg). The broth extract was chromatographed on $\mathrm{Al}_{2} \mathrm{O}_{3}(5 \%$ deactivated; 60 g). Petrol- $\mathrm{CHCl}_{3}(1: 4$ and $1: 8)$ eluted material which was purified by p.l.c. [1 large plate, $2 \times$ EtOAc] to give $4 \alpha, 17 \beta$-dihydroxy- 5α-androstan-11-one (no. 584) (253 mg), m.p. (from $\mathrm{Me}_{2} \mathrm{CO}$) and mixed ${ }^{1} \mathrm{~m} . \mathrm{p}$. 212-214 ${ }^{\circ}$, and $7 \beta, 17 \beta$-dihydroxy- $5 \alpha-a n d r o s t a n-11-o n e$ (no. 645) (73 mg), m.p. $210-212^{\circ}$ (from $\mathrm{Me}_{2} \mathrm{CO}$-hexane), $[\alpha]_{\mathrm{D}}$ $+85^{\circ}(c 0.8)$ (Found: C, $74.2 ; \mathrm{H}, 9.6 . \quad \mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{3}$ requires C, $74.5 ; \mathrm{H}, 9.9 \%$), $v_{\text {max. }}\left(\mathrm{CHCl}_{3}\right) 3550$ and $1705 \mathrm{~cm}^{-1}$. CHCl_{3} eluted $3 \alpha, 17 \beta$-dihydroxy- 5α-androstan-11-one (no. 574) (189 mg), m.p. (from $\mathrm{Me}_{2} \mathrm{CO}$-hexane) and mixed ${ }^{1}$ m.p. 232- 234°.
(b) Incubation with Rc: 1.0 g in EtOH (50 ml), 25 flasks, medium B, 4 d , extraction II \longrightarrow mycelial and broth extracts. The mycelial extract yielded s.m. (191 mg). The broth extract was chromatographed on $\mathrm{Al}_{2} \mathrm{O}_{3}$ (5% deactivated; 50 g). Petrol- CHCl_{3} (1:2) gave $4 \alpha, 17 \beta$ -dihydroxy- 5α-androstan-11-one (no. 584) (455 mg), m.p. and mixed m.p. 210-214 . Petrol- $\mathrm{CHCl}_{3}(1: 3)$ eluted material which was further purified by p.l.c. [2 small plates, $3 \times$ petrol- $\left.\mathrm{Me}_{2} \mathrm{CO}(2: 1)\right]$ to give $7 \beta, 17 \beta$-dihydroxy- 5α -androstan-11-one (no. 645) (151 mg), m.p. and mixed m.p. 210-212 ${ }^{\circ}$.

We thank the Rhodes Trust for a scholarship (to I. M. C.), I.C.I. Ltd. for a Postdoctoral Fellowship (to W. A. D.), and Glaxo Laboratories Ltd. for grants and gifts of chemicals.
[3/601 Received, 22nd March, 1973]

